АО «ЭТАЛОН ТКС»

ПОДОГРЕВАТЕЛЬ БЛОЧНЫЙ АВТОМАТИЗИРОВАННЫЙ НЕФТИ ТИПА ПБА

Техническое описание

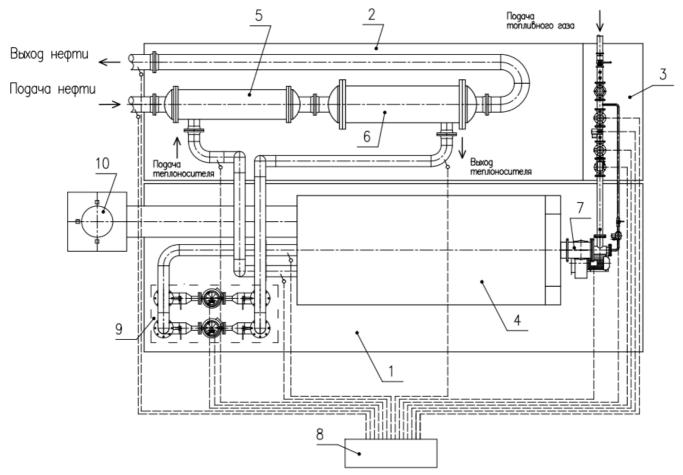
Введение

Подогреватель блочный автоматизированный нефти типа $\Pi BA - 0.25$ (0,5;1;2;4) (далее «Подогреватель типа ΠBA ») - оборудование блочно-комплектное для нефтегазовой отрасли, предназначенное для нагрева нефти или нефтепродуктов различной вязкости в технологических схемах их подготовки на нефтепромыслах, а также при их транспортировке.

Физический принцип действия подогревателя ПБА основан на передаче тепла через стенку нефти или нефтепродуктам от теплоносителя, нагреваемого до температуры $115\,^{\circ}\mathrm{C}$ за счет сжигания природного газа или попутного нефтяного газа.

Подогреватели типа ПБА работают в автоматическом режиме без постоянного присутствия обслуживающего персонала.

Конструкция подогреватели типа ПБА защищена патентом на изобретение Федеральной службы по интеллектуальной собственности (Роспатент) №2505751.


Климатическое исполнение У1 (от минус 45 до плюс 40 0 C).

Основные сведения об изделии

- 1 Подогреватель блочный автоматизированный нефти типа ПБА соответствует требованиям:
- технического регламента Таможенного союза «О безопасности машин и оборудования» ТР $TC\ 010/2011;$
- Федеральных норм и правил в области промышленной безопасности «Правила безопасности в нефтяной и газовой промышленности», утвержденных приказом Федеральной службы по экологическому, технологическому и атомному надзору от 12.03.2013 № 101;
- ОСТ 26-18-5-88 «Блоки технологические газовой и нефтяной промышленности. Общие технические требования».
- 2 Подогреватели типа ПБА по ТУ 3667-127-13972650-2013 изготавливаются в контейнерном исполнении, из одного или нескольких модулей заводской готовности, внутри которых размещено оборудование, обеспечивающее работу подогревателя.

После монтажа модулей и соединения всех трубопроводов подогреватель типа ПБА представляет собой единый блок, состоящий из следующих узлов:

- модуль теплогенерации;
- модуль теплообмена;
- блок подготовки топлива (системы топливоподачи);
- система автоматики и безопасности.

1 – модуль теплогенерации; 2 – модуль теплообмена; 3 – блок подготовки топлива;

4 – теплогенератор (водогрейный котел); 5 – теплообменный аппарат;

6 – теплообменный аппарат; 7 – горелка газовая; 8 – шкаф автоматики;

9 – блок насосов; 10 – дымовая труба

3 Основные параметры и характеристики

3.0									
No	Наименование	ПБА-0,25	ПБА-0,5	ПБА-1	ПБА-2	ПБА-4			
п/п		, , , , , , , , , , , , , , , , , , ,							
1.	Номинальная тепловая мощность, МВт	0,25	0,5	1	2	4			
	(Гкал/ч)	(0,215)	(0,43)	(0,86)	(1,72)	(3,44)			
2.	Производительность по нагреваемому продукту, кг/с (т/сут.), не более:								
	- при нагреве на 20 °C	4,6 (397)	9 (794)	18 (1588)	37 (3177)	73,5(6353)			
	- при нагреве на 75 °C	1,2 (106)	2,5 (212)	4,9 (423)	9,8 (847)	19,6(1694)			
3.	Давление в продуктовом змеевике рабочее, МПа (кгс/см ²), не более	6,3 (63)							
4.	Перепад давления в змеевике, МПа (кгс/см ²), не более	0,2 (2,0)		0,55 (5,5)					
5.	Температура:								
	- на входе продукта в подогреватель, °С, не менее 5								
	- нагрева продукта, °С, не более	85							
	- нагрева промежуточного теплоносителя, °С, не более 115								
6.	Объем теплоносителя, м ³ , не более	0,3	0,55	1,0	1,6	3,0			
7.	Промежуточный теплоноситель	пресная вода; водный раствор этиленгликоля; водный раствор пропиленгликоля							

8.	Нагреваемая среда:	(нефть, нефтяная эмульсия, пластовая вода)								
	Вязкость, при 20 °C, сСт, не более	800								
	Содержание кислых газов:									
	- сероводород (H2S), % мол., не более	nee 6								
	- двуокись углерода (СО2), % мол., не более									
	Топливо:	газ природный, попутный нефтяной газ								
	Теплота сгорания низшая природного газа, МДж/нм ³ , не менее 31,8									
	Теплота сгорания низшая нефтяного газа, МДж/нм ³ , в пределах 25–60									
	Массовая концентрация сероводорода в природном газе, г/м ³ , не более 0,02									
	Содержание сероводорода, мас. доля, %, не более 6									
	Давление на входе в подогреватель, МПа (кгс/см 2), в пределах $0.3(3) - 0.6(6)$									
	Номинальное давление перед горелкой, к	Па, в преде	элах	10-30						
9.	Расход топлива, м3/ч:									
	- газ природный, не более	31,5	62,9	125,8	215,6	503,2				
	- нефтяной газ, в пределах	18,8-45	37,5-90	75-180	150-360	300-720				
10.	Коэффициент полезного действия, %, не									
	менее:									
	- при сжигании природного газа	92	92	92	92	92				
	- при сжигании нефтяного газа	86	86	86	86	86				
11.	Масса подогревателя в нерабочем	3,0	5,2	10	14,6	43,8				
	состоянии, т, не более									
12.	Габаритные размеры:									
	- длина	5,0	5,2	5,8	7,0	12				
	- ширина	3,6	3,8	4,2	4,8	5,4				
	- высота	2,1	2,2	2,4	2,6	3				

Примечание:

- * Приведенные параметры обеспечиваются для подогреваемых сред с вязкостью при температуре $20~^{\circ}$ C, не более $10\times10^{-6}~\text{m}^2/\text{c}$ (100~cCm).
- Изготовитель оставляет за собой право вносить изменения или осуществлять замену приборов на аналогичные, не ухудшающие технические характеристики изделия.

Система автоматизации

Система автоматизации подогревателя ПБА обеспечивает:

- световую сигнализацию при нормальной работе подогревателя;
- световую и звуковую сигнализацию при наличии загазованности в контейнере угарным газом CO; CH₄.
- защиту котла посредством отсечки топлива и оповещение световой индикацией и звуковой сигнализацией;

Аварийная защита с отсечкой топлива и блокировкой пуска обеспечивается в случаях:

- повышения давления в топке котла;
- понижении давления нефти (нефтяной эмульсии) на выходе подогревателя ниже допустимого значения,
- снижение давления газа ниже установленного предела,
- снижение давления воздуха ниже установленного предела,
- повышение давления топливного газа выше установленного предела
- погасания факелов горелок, отключение которых при работе котла не допускается;
- обрыва линии связи с датчиками;
- исчезновения напряжения питания системы автоматизации;
- наличия загазованности в контейнере угарным газом СО.

Автоматическое регулирование предусматривает:

 регулирование заданного значения температуры нагрева нефти (нефтяной эмульсии) путем регулирования давления топливного газа и давления воздуха перед горелкой с автоматическим поддержанием соотношения газ-воздух.

Техническое обслуживание и ремонт

Подогреватель ПБА относится к ремонтируемым, восстанавливаемым изделиям с регламентированным техническим обслуживанием и ремонтом по техническому состоянию.

Конструкция подогревателя агрегатирована с целью обеспечения демонтажа и взаимозаменяемости сборочных единиц и деталей для ремонта.

Надежность

- ресурс до капитального ремонта 25 000 ч;
- назначенный ресурс не менее 90 000 ч.

Срок службы подогревателя ПБА не менее 15 лет.

Комплектность

В комплект поставки входят:

- подогреватель блочный автоматизированный ПБА;
- обоснование безопасности по ГОСТ Р 54122;
- формуляр, паспорт, руководство по эксплуатации по ГОСТ 2.601, ГОСТ 2.610;
- комплект эксплуатационных документов в соответствии с ведомостью эксплуатационных документов по ГОСТ 2.601, ГОСТ 2.610;
- комплект ЗИП;
- упаковочный лист.

Комплект поставки может быть дополнен по согласованию производителя с потребителем.